
Lecture 10: Talagrand Inequality and Applications

Talagrand Inequality



Overview

Today we shall see (without proof) a concentration inequality
called the “Talagrand Inequality”
This result shall help us prove concentration of a large class of
problems around its median
As an application, we shall see a concentration result for the
longest increasing subsequence
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Convex Distance I

Recall the definition of the Hamming distance between two
elements x , y ∈ Ω := Ω1 ×· · · × Ωn∣∣{i : 1 6 i 6 n and xi 6= yi}

∣∣
Intuitively, the strings get penalized “1” for every index i where
xi and yi are different

We can consider a weighted variant of this distance where
every index i has its own associated penalty αi

Before we proceed to developing this new notion of distance,
let us first normalize the Hamming distance. Consider the

following redefinition. Let α = (α1, . . . , αn) =
(

1√
n
, . . . , 1√

n

)
.

We define
dH(x , y) =

∑
16i6n : xi 6=yi

αi
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Convex Distance II

For the sake of completeness, we write down the inequality
that we saw on Hamming distance in this new form

P [X ∈ A] · P
[
dH(X,A) > E

]
6 exp(−E 2/2)

Now, we are at a position to generalize the notion of distance
to any vector α with norm 1. That is, consider
α = (α1, . . . , αn) such that

α1, . . . , αn > 0, and∑n
i=1 α

2
i = 1.

We define the following distance between x , y ∈ Ω with
respect to α as follows

dα(x , y) :=
∑

16i6n : xi 6=yi

αi

Intuitively, this captures the fact that every coordinate i could
possibly be penalized differently as compared to other
coordinates.
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Convex Distance III

Now, for a pair x , y we consider the “most severe penalty.”

Definition (Convex Distance)

For x , y ∈ Ω, we define the convex distance between x and y as
follows

dT (x , y) := sup
α : ‖α‖2=1

dα(x , y)

Similar to the case of Hamming distance, we can define the
distance of x ∈ Ω from a set A ⊆ Ω

dT (x ,A) = min
y∈A

dT (a, y)

So, if dT (x ,A) > t, then we have dT (x , y) > t, for all y ∈ A.
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Talagrand Inequality

Let X = (X1, . . . ,Xn) be a random variable over Ω, such that
each Xi is independent of the others and Xi ∈ Ωi

Let f : Ω→ R
Talagrand inequality states that if any A ⊆ Ω is dense, then it
is unlikely that X is far (w.r.t. the dT (·, ·) distance) from A

Theorem (Talagrand Inequality)

For any A ⊆ Ω, we have

P [X ∈ A] · P
[
dT (X,A) > E

]
6 exp(−E 2/4)
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Application: Longest Increasing Subsequence I

Let us first formulate the longest increasing subsequence
problem. Suppose X = (X1, . . . ,Xn), where each Xi is
independent and uniformly distribution over Ωi = [0, 1)

We are interested in f (X), the length of the longest increasing
subsequence in (X1, . . . ,Xn)

Let us try to understand the expected value E
[
f (X)

]
and its

concentration that we can conclude from the previous tools
that we have studied
Note that f is (1, 1, . . . , 1) bounded difference function,
because changing one entry in X can change the longest
increasing subsequence by at most 1. So, we can apply the
independent bounded difference inequality to conclude the
following

P
[
f (X) > E

[
f (X)

]
+ E

]
6 exp(−2E 2/n)
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Application: Longest Increasing Subsequence II

Note that the radius of concentration that we obtain from the
inequality is (roughly)

√
n

Although, this result is non-trivial, it is useless. Because we
have E

[
f (X)

]
= Θ(

√
n). Students are highly encouraged to

prove this result

Our objective is to use the Talagrand inequality to prove a
concentration of f (X) around its median m with radius of
concentration

√
m. Note that by the Markov inequality, we

have m 6 2E
[
f (X)

]
, hence, m and E

[
f (X)

]
have the same

order. Therefore, the radius of concentration is Θ(n1/4). Now,
this result is useful
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A Pitstop I

Our objective is to get a concentration inequality of f (X).
Define Ba =

{
y : y ∈ Ω and f (y) 6 a

}
Suppose we prove the following claim

Claim (A Technical Claim)

P
[
f (X) 6 a

]
· P
[
f (X) > a+ E

]
6 P [X ∈ Ba] · P

[
dT (X,Ba) >

E√
a+ E

]
.

Using this technical claim, let us get our concentration
inequalities for the distribution f (X)

Note that Talagrand inequality is applicable to the right-hand
side of the claim. Therefore, we get

P
[
f (X) 6 a

]
· P
[
f (X) > a+ E

]
6 P [X ∈ Ba] · P

[
dT (X,Ba) >

E√
a+ E

]
6 exp

(
− E 2

4(a+ E)

)
.
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A Pitstop II

Bounding the upper tail. Set a = m, the median of the
distribution f (X). Then, we have
P
[
f (X) 6 a

]
= P

[
f (X) 6 m

]
> 1/2. Next, using the

inequality, we get

P
[
f (X) > m + E

]
6

exp
(
− E2

4(m+E)

)
P
[
f (X) 6 m

]
6 2 exp

(
− E 2

4(m + E )

)
.
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A Pitstop III

Bounding the lower tail. Set a + E = m, the median of the
distribution f (X). Then, we have
P
[
f (X) > a + E

]
= P

[
f (X) > m

]
> 1/2. Next, using the

inequality, we get

P
[
f (X) 6 a

]
= P

[
f (X) 6 m − E

]
6

exp
(
− E2

4m

)
P
[
f (X) > m

]
6 2 exp

(
− E 2

4m

)
.

Therefore, all that remains is to prove the technical claim.
Remark. We did not use any “special property” of the
function f (·). For a particular function f (·), if we can prove
the technical claim, then we are done!
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A Pitstop IV

Remark. This concentration is around the median (not the
mean). However, by Markov inequality, we know that the
median cannot be much larger than the mean.
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Longest Increasing Subsequence I

In this part of the lecture we will prove the technical claim for the
particular function f (·) that outputs the length of the longest
subsequence of its input bitstring
Proof outline.

Recall that we need to prove

P
[
f (X) 6 a

]
· P
[
f (X) > a+ E

]
6 P [X ∈ Ba] · P

[
dT (X,Ba) >

E√
a+ E

]
.

By definition, the event “f (X) 6 a” is equivalent to the event
“X ∈ Ba.” Therefore, proving the technical claim is equivalent
to proving the inequality

P
[
f (X) > a + E

]
6 P

[
dT (X,Ba) >

E√
a + E

]
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Longest Increasing Subsequence II

Observe that if an event A implies an event B, then
P [A] 6 P [B]. Therefore, it suffices to prove that the event
“f (X) > a + E ” implies the event “dT (X,Ba) > E√

a+E

In the rest of the lecture, we prove this implication

Proof.
Suppose X = (X1, . . . ,Xn), where each Xi is independent and
uniformly distributed over Ωi = [0, 1)

We are interested in demonstrating a concentration bound for
f (X), where f (X) is the longest increasing subsequence in
(X1, . . . ,Xn)

Observation. Consider any x ∈ Ω := Ω1 ×· · · × Ωn. If
f (x) = k (i.e., the longest increased subsequence in x is k),
then there is a set Kx = {i1, . . . , ik} ⊆ {1, . . . , n} such that Kx

denotes the indices of the longest increasing subsequence in x
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Longest Increasing Subsequence III

Observation. Consider any y ∈ Ω. Note that if y agrees with
x at all the indices in Kx , then we have f (y) > f (x) (it is
possible that y has a longest increasing subsequence, but,
definitely, it will not be shorter than the length of the longest
increasing subsequence in x)

Observation. Let us generalize the previous observation
further. Consider any y ∈ Ω. Note that if y agrees with x at
all indices in Kx except at ` indices. Then, we have
f (y) > f (x)− `. Formally, we can write this as follows

f (y) > f (x)−
∣∣{i : i ∈ Kx and xi 6= yi}

∣∣
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Longest Increasing Subsequence IV

Intuitively, we incur a penalty for every i ∈ Kx where x and y
differ. Let us fix αx = (α1, . . . , αn) such that

αi =

0 i 6∈ Kx

1√
|Kx |

i ∈ Kx

Note that |Kx | = f (x). So, we conclude that

f (y) > f (x)−
√
f (x)dαx (x , y)

Rearranging, we get that

dαx (x , y) >
f (x)− f (y)√

f (x)
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Longest Increasing Subsequence V

Since, dT (·, ·) is a supremum of dα(·, ·) over all α with norm
1, we get that

dT (x , y) >
f (x)− f (y)√

f (x)

Define Ba = {y : y ∈ Ω and f (y) 6 a}. So, for all y ∈ Ba, we
have f (y) 6 a. Therefore, for any y ∈ Ba, we get

dT (x , y) >
f (x)− a√

f (x)

Since, the inequality holds for all y ∈ Ba, we conclude that

dT (x ,Ba) >
f (x)− a√

f (x)

Talagrand Inequality



Longest Increasing Subsequence VI

Observation. If f (x) > a + E , then

dT (x ,Ba) >
E√
a + E

This observation concludes the proof of the technical claim.
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Configuration Function

The approach of applying the Talagrand inequality to the
problem of longest increasing subsequence can be generalized
to several problems.
Consider the definition of c-configuration functions

Definition (Configuration Functions)

A function f is a c-configuration function, if for every x , y , there
exists αx ,y such that the following holds

f (y) > f (x)−
√
c · f (x)dαx,y (x , y)

Note that the longest increasing subsequence defines f (·) that
is 1-configuration function. The derivation used above can be
identically used for c-configuration functions
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