


Overview

e Today we shall see (without proof) a concentration inequality
called the “Talagrand Inequality”

@ This result shall help us prove concentration of a large class of
problems around its median

@ As an application, we shall see a concentration result for the
longest increasing subsequence
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Convex Distance |

@ Recall the definition of the Hamming distance between two
elements x,y € Q:= Q1 x--- x Q,

{i:1<i<nand x # y}|

@ Intuitively, the strings get penalized “1" for every index i where
x; and y; are different

@ We can consider a weighted variant of this distance where
every index i has its own associated penalty «;

@ Before we proceed to developing this new notion of distance,
let us first normalize the Hamming distance. Consider the

following redefinition. Let o = (au,..., ) = <%, e ﬁ)
We define
dr(x,y) = Z aj

1<i<n: xi#y;
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@ For the sake of completeness, we write down the inequality
that we saw on Hamming distance in this new form

P[X € A]-P [du(X,A) > E] < exp(—E?/2)

@ Now, we are at a position to generalize the notion of distance
to any vector v with norm 1. That is, consider

a = (ai,...,q,) such that
e ay,...,a, =0, and
noo2_
° >0 =1L

@ We define the following distance between x, y € Q with
respect to « as follows

do(x,y) == Z o

1<i<n: x#y;

Intuitively, this captures the fact that every coordinate i could
possibly be penalized differently as compared to other

coordinates.
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@ Now, for a pair x, y we consider the “most severe penalty.”

Definition (Convex Distance)

For x,y € Q, we define the convex distance between x and y as
follows

dr(x,y):= sup da(x,y)

a: [laf=1

@ Similar to the case of Hamming distance, we can define the
distance of x € Q fromaset AC Q

dr(x,A) = }r}"leln dr(a,y)

So, if dr(x,A) > t, then we have dr(x,y) > t, for all y € A.
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Talagrand Inequality

o Let X =(Xy,...,X,) be a random variable over Q, such that
each X is independent of the others and X; € Q;
o letf: Q2 —=R

o Talagrand inequality states that if any A C Q is dense, then it
is unlikely that X is far (w.r.t. the dr (-, -) distance) from A

Theorem (Talagrand Inequality)

For any A C Q, we have

P[X € Al - P [dr(X, A) > E] < exp(—E2/4)
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Application: Longest Increasing Subsequence |

@ Let us first formulate the longest increasing subsequence
problem. Suppose X = (Xy,...,X,), where each X is
independent and uniformly distribution over Q; = [0,1)

e We are interested in f(X), the length of the longest increasing
subsequence in (Xy,...,X,)

o Let us try to understand the expected value E [f(X)] and its
concentration that we can conclude from the previous tools
that we have studied

@ Note that f is (1,1,...,1) bounded difference function,
because changing one entry in X can change the longest
increasing subsequence by at most 1. So, we can apply the
independent bounded difference inequality to conclude the
following

P [f(X) > E[f(X)] + E} < exp(—2E2/n)
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Note that the radius of concentration that we obtain from the
inequality is (roughly) v/n

e Although, this result is non-trivial, it is useless. Because we
have E [f(X)] = ©(y/n). Students are highly encouraged to
prove this result

@ Our objective is to use the Talagrand inequality to prove a
concentration of f(X) around its median m with radius of
concentration y/m. Note that by the Markov inequality, we
have m < 2E [f(X)], hence, m and E [f(X)] have the same
order. Therefore, the radius of concentration is ©(n'/#). Now,
this result is useful
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Our objective is to get a concentration inequality of £(X).
o Define B,={y:y € Qand f(y) < a}

@ Suppose we prove the following cIa|m

Claim (A Technical Claim)

P[f(X)<a] -P[f(X)>a+E] < [XGBQ]-P{dT(X,Ba)Zm.

@ Using this technical claim, let us get our concentration
inequalities for the distribution f(X)

@ Note that Talagrand inequality is applicable to the right-hand
side of the claim. Therefore, we get

E

P[f(X)<a] -P[f(X)>a+E] <P[X€eB)]- IP’{ (X,Ba)>ﬁ

E?
< exp (4(a—|—E)> .
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@ Bounding the upper tail. Set a = m, the median of the
distribution f(X). Then, we have
P [f(X) < a] =P [f(X) < m] > 1/2. Next, using the
inequality, we get

2

b (~a55r7)

P[f(X)Zm-i-E] <W

E2
<2ep |~ |-
P\ 4m+E)
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e Bounding the lower tail. Set a+ E = m, the median of the
distribution f(X). Then, we have
P[f(X)>a+ E] =P [f(X) > m| > 1/2. Next, using the
inequality, we get

P[f(X)<a] =P [f(X) < m— E|

2
o0 (i)

SBIAX) > m]

E2
< 2exp (—4) .
m

@ Therefore, all that remains is to prove the technical claim.

@ Remark. We did not use any “special property” of the
function f(-). For a particular function f(-), if we can prove
the technical claim, then we are donel!
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e Remark. This concentration is around the median (not the
mean). However, by Markov inequality, we know that the
median cannot be much larger than the mean.
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In this part of the lecture we will prove the technical claim for the
particular function f(-) that outputs the length of the longest
subsequence of its input bitstring
Proof outline.

@ Recall that we need to prove

Pf(X)<a] -P[f(X)>a+E] <P[Xe B.;]-P[dr(x,sa» \/aETE}

@ By definition, the event “f(X) < a" is equivalent to the event
“X € B,." Therefore, proving the technical claim is equivalent
to proving the inequality

P[f(X)>a+E|]<P [dT(X, B,) > \/:—7E]
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Longest Increasing Subsequence ||

@ Observe that if an event A implies an event B, then
P[A] < P[B]. Therefore, it suffices to prove that the event

“f(X) > a+ E" implies the event "d7 (X, B,) > 7af+E

@ In the rest of the lecture, we prove this implication
Proof.

@ Suppose X = (Xy,...,X,), where each X is independent and
uniformly distributed over Q; = [0, 1)

@ We are interested in demonstrating a concentration bound for
f(X), where f(X) is the longest increasing subsequence in
(Xq,...,X,)

@ Observation. Consider any x € Q :=Q; x--- x Q,. If
f(x) = k (i.e., the longest increased subsequence in x is k),
then there is a set Ky = {i1,...,ik} C{1,...,n} such that K,
denotes the indices of the longest increasing subsequence in x

Talagrand Inequality



Longest Increasing Subsequence |lI

@ Observation. Consider any y € Q. Note that if y agrees with
x at all the indices in K, then we have f(y) > f(x) (it is
possible that y has a longest increasing subsequence, but,
definitely, it will not be shorter than the length of the longest
increasing subsequence in x)

@ Observation. Let us generalize the previous observation
further. Consider any y € Q. Note that if y agrees with x at
all indices in K, except at £ indices. Then, we have
f(y) = f(x) — ¢. Formally, we can write this as follows

fy) > () —[{i 1 € Ky and x # yi}]
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@ Intuitively, we incur a penalty for every i € K, where x and y

differ. Let us fix ax = (a1,...,a,) such that
0 i Z Ky
o = 1 .
€ Ky
N

Note that |K,| = f(x). So, we conclude that

fly) = f(x) = Vf(x)da,(x,¥)

@ Rearranging, we get that

do, (x,y) >
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e Since, d7(-,-) is a supremum of d,(-,-) over all & with norm
1, we get that
f(x) — fy)
f(x)

@ Define B, ={y: y € Q and f(y) < a}. So, for all y € B,, we
have f(y) < a. Therefore, for any y € B,, we get

dT(X7y) >

f(x)—a
f(x)

dT(va) P

@ Since, the inequality holds for all y € B,, we conclude that

dT(X7 Ba) P
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e Observation. If f(x) > a+ E, then

E
va+ E

@ This observation concludes the proof of the technical claim.

dr(x, B,y) >
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Configuration Function

@ The approach of applying the Talagrand inequality to the
problem of longest increasing subsequence can be generalized
to several problems.

e Consider the definition of c-configuration functions

Definition (Configuration Functions)

A function f is a c-configuration function, if for every x, y, there
exists a,, such that the following holds

fly) = f(x) = Ve f(x)da,, (x,y)

o Note that the longest increasing subsequence defines 7(-) that
is 1-configuration function. The derivation used above can be
identically used for c-configuration functions
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